15AME18-FLUID MECHANICS AND HYDRAULIC MACHINERY

L T P C 3 1 0 3

Course Objectives:

- The purpose of this course is to learn the Fluid properties and fundamentals of Fluid statics and fluid flow
- To introduce the concepts of flow measurements and flow through pipes
- To introduce the concepts of momentum principles
- To impart the knowledge on pumps and turbines

UNIT - I : Fluid Statics: Dimensions and units: physical properties of fluids – specific gravity, porosity surface tension – vapour pressure and their influence on fluid motion – atmospheric gauge and vacuum pressure – measurement of pressure – Piezometer, U-tube differential manometers.

Fluid Kinematics: stream line, path line and streak lines and steam tube, classification of flows-steady & unsteady, uniform, non uniform, laminar, turbulent, rotational, and irrotational flows-equation of continuity for one dimensional flow.

Fluid dynamics: surface and body forces – Euler's and Bernoulli's equations for flowing stream line, momentum equation and its application on force on pipe bend.

UNIT – II: Conduit Flow: Reynold's experiment – Darcy Weisbach equation – Minor losses in pipes – pipes in series and pipes in parallel – total energy line-hydraulic gradient line. Measurement of flow: pilot tube, venturimeter, and orifice meter, Flow nozzle, Turbine current meter.

UNIT – **III: Turbo Machinery**: hydrodynamic force of jets on stationary and moving flat, inclined, and curved vanes, jet striking centrally and at tip, velocity diagrams, work done efficiency, flow over radial vanes.

Hydroelectric Power Stations: Elements of hydro electric power station-types-concept of pumped storage plants-storage requirements.

UNIT – **IV: Hydraulic Turbines**: Classification of turbines, impulse and reaction turbines, Pelton wheel, Francis turbine and Kaplan turbine-working proportions, work done, efficiencies hydraulic design-draft tube- theory- functions and efficiency.

Performance Of Hydraulic Turbines: Unit and specific quantities, characteristic c governing of turbines, selection of type of turbine, cavitation, surge tank, hammer.

UNIT – V: Centrifugal Pumps: Classification, working, work done – manomertic head – loss efficiencies – specific speed – pumps in series and parallel – performance characteristic curves, NPSH.

Text Books:

- 1. Hydraulics, fluid mechanics and Hydraulic machinery MODI and SETH.
- 2. Fluid Mechanics by FM Streeter, TMH
- 3. Fluid Mechanics by Dr.R.K.Bansal, Lakshmi Publications Pvt.Ltd.

Head

Mechanical Engineering Department,
JNTUA College of Engineering,
PULIVENDULA - 516 390.

t

Reference Books:

- 1. Fluid Mechanics and Fluid Power Engineering by D.S. Kumar, Kotaria &.
- 2. Fluid Mechanics and Machinery by D.Rama Durgaiah, New Age Internat.
- 3. hydraulic Machines by Banga & Sharma, Khanna Publishers.
- 4. Instrumentation for Engineering Measurements by James W.Dally, Wiley Riley, John Wiley & Sons Inc. 2004

Course Outcomes

- Read and follow directions for laboratory experiments.
- Operate fluid flow equipment and instrumentation.
- Collect and analyze data using fluid mechanics principles and experimentation methods.
- Prepare reports following accepted writing and graphical techniques.
- Perform exercises in small teams.
- Demonstrate principles discussed in Fluid Mechanics lecture course.
- Student can able to identify the type of turbine with known specific speed.
- Student can able to identify and design the pumps with known specific speed and manometric head

Mechanical Engineering Department,
JNTUA College of Engineering,
PULIVENDULA - 516 390,